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New high-dimensional semi-quantum key distribution
protocol 1

Simpler method for security analysis

Proof of information theoretic security

1https://arxiv.org/abs/1907.11340

https://arxiv.org/abs/1907.11340
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Quantum Key Distribution(QKD)
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A Concrete Example
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QKD: All parties have advanced quantum capabilities.
What if Bob can’t measure in the X basis?
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Semi-Quantum Key Distribution (Boyer et al., 2007)
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Bridge the gap between Classical and
Quantum realms

Use less expensive hardware

Fallback option for fully fledged QKD
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A Concrete Example
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SQKD
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QKD with High-dimensional(HD) systems
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Naturally carries more information

More robust against quantum cloning

More noise resistant
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Earlier works on HD-QKD :

High-dimensional quantum key distribution based on
mutually partially unbiased bases (Wang et al., 2020)

Provably secure and high-rate quantum key distribution
with time-bin qudits (Islam et al., 2017)

Security proof for quantum key distribution using qudit
systems (Sheridan et al., 2010)
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Can we use HD-systems in SQKD scenario and still prove
information theoretic security?
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A key is secure if Alice’s and Bob’s keys are the same and Eve
has no knowledge about it.
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Let a joint state among Alice, Bob and Eve be:

ρreal
XYE =

∑
kA,kB∈{0,1}l

Pr(kA, kB) |kA〉〈kA| ⊗ |kB〉〈kB| ⊗ ρ
(kA,kB)
E ,

and another desired state be:

ρideal
XYE =

1
2l

∑
k∈{0,1}m

|k〉〈k |A ⊗ |k〉〈k |B ⊗ ρE .

Then the final key k is said to be ε-secure if (Renner 2005)

1
2
||ρreal

XYE − ρ
ideal
XYE ||1 ≤ ε,

where ||A||1 := Tr
(√

A†A
)

is the trace norm of A.
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ε = ε′ + ε′′-security also implies that it is:

ε′-correct := Pr(kA 6= kB) ≤ ε′,

and if C is communication transcript in IR,

ε′′-secret :=
1
2
||ρreal

XCE − ρ
ideal
XCE ||1 ≤ ε

′′

Renner (2005) proved that:

||ρreal
XCE − ρ

ideal
XCE ||1 ≤ 2−

1
2 (Hmin(X |CE)−l),

where l is the final length of the key. We want the r.h.s to be at
most 2ε′′.
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Solving for l , we get:

l ≤ Hmin(X |CE) + 2 log
(
2ε′′
)

Let’s take the equality to get the maximum length:

l = Hmin(X |CE) + 2 log
(
2ε′′
)

≥ Hmin(XC|E)− Hmax(C) + 2 log
(
2ε′′
)

[Chain rule]
≥ Hmin(X |E) + Hmin(C|X )− Hmax(C) + 2 log

(
2ε′′
)

≥ Hmin(X |E)− (Hmax(C)− Hmin(C|X )) + 2 log
(
2ε′′
)

Now, as we are interested in the asymptotic scenario, where:

1
n

Hmin(X |E) = H(X |E), and
1
n
(Hmax(C)− Hmin(C|X )) = H(X |Y ).

So, finally:

l ≥ H(X |E)− H(X |Y ) + 2 log
(
2ε′′
)
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Finally, if ρ is one key-iteration of a protocol,the key-rate is
defined as:

key-rate :=
l
n
= min(H(X |E)ρ − H(X |Y )ρ)
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The Protocol
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SQKD: |0〉 , |1〉 , |+〉 , |−〉 are two
dimensional.

HD-SQKD: |z〉 ∈ {|0〉 , |1〉 ... |N − 1〉},
|x〉 ∈ F{|0〉 , |1〉 ... |N − 1〉} where F is
Quantum Fourier transformation.

,
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Problem: Two-way SQKD analysis and density matrix
computation is too complex
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Solution: Reduction to One Way Protocol
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Theorem
Let (UF ,UR) be a collective attack against HD-SQKD. Then,
there is an attack against the OW-SQKD protocol such that,
Eve gets no advantage in either scenario.
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HD-SQKD OW-SQKD
1. A prepares |z〉 or |x〉, sends
to Bob

1. Bob prepares and sends |φR〉
or |φMR〉 if he wants to reflect or
measure respectively

2. Eve attacks with UF 2. Eve attacks with U
3. Bob measures or resends in
Z basis

3. Alice measures A1 and A2
registers in Z or X basis

4. Eve attacks with UR
5. Alice measures the returning
n qubits in the preparation basis

|z〉 ∈{|0〉 , |1〉 , ....., |N − 1〉}, |x〉 = F |z〉 (1)

|φR〉 =
2n−1∑
b=0

√
p(b) |b,b〉A1A2

⊗ |0〉B (2)

|φMR〉 =
2n−1∑
b=0

√
p(b) |b,b,b〉A1A2B (3)
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Proof
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HD-SQKD OW-SQKD

|ψ〉 = 1√
N

∑
a

|a, a〉 |φ〉 =
N−1∑
b=0

√
p(b) |b, b, b〉A1A2B

UF |a〉 ⊗ |χ〉 =
∑

b

|b, eab〉 Rw |b, b〉A1A2
=

∑
a |a, b, eab〉√

N.p(b)

UF |ψ〉 =
1√
N

∑
a

|a〉
∑

b

|b, eab, b〉TEB
Rw |φ〉 =

∑
b

√
p(b)

(∑
a |a, b, eab〉√

N.p(b)

)
⊗ |b〉B

=
1√
N

∑
a

|a〉A1

∑
b

|b, eab, b〉A2EB
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In two-way case, let Alice’s choices are |0〉 , |1〉 , |2〉 , |3〉 and she
chooses |1〉 to send to Bob. Eve attacks then:

UF |1〉 = |0,e10〉+ |1,e11〉+ |2,e12〉+ |3,e13〉

Bob measures and finds a |2〉 with probability 〈e12|e12〉. Then,
one-way case, Rw must recreate all the scenarios where Bob
could measure a |2〉. Specifically,

|0〉 −→ |2〉 , with probability 〈e02|e02〉
|1〉 −→ |2〉 , with probability 〈e12|e12〉
|2〉 −→ |2〉 , with probability 〈e22|e22〉
|3〉 −→ |2〉 , with probability 〈e32|e32〉

So,

Rw |2,2〉 =
|0,2,e02〉+ |1,2,e12〉+ |2,2,e22〉+ |3,2,e32〉√

4 · p(2)
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Key-rate Computation
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Only Measure/Resend (M/R) rounds are
key-generating-rounds. Reflect rounds are used for noise

estimation. So the goal is to upper bound Eve’s uncertainty
about Alice’s register in M/R case.
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But it’s not observable!
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Eve’s uncertainty about the reflect case is not observable either.
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But Alice can measure the uncertainty in the reflect case!
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Entropic uncertainty relation (Berta et al., 2009): For any
density operator ρA1A2E and two measurements Z and F ,

H(AZ
1 |E) + H(AF

1 |A2) ≥ n
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We can bound Eve’s uncertainty in Reflect case
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Continuity bound(Winter, 2015): For states ρ and µ on a Hilbert
space A⊗ E , if 1

2 ||ρ− σ|| ≤ δ ≤ 1 then

|H(AZ
1 |E)ρ − H(AZ

1 |E)µ| ≤ 2δlog|AZ
1 |+ (1 + δ)h(

δ

1 + δ
)
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We can bound Eve’s uncertainty in M/R case
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In our case, δ is linear function.

δ = f (noise, eigenvalues, dimension),

and key-rate r is:

r ≥ n(1− δ)− (1 + δ)H(
δ

1 + δ
)− 2Q log2(2

n − 1)− 2H(Q),

where, n is the number of qubits sent, δ is the trace distance, Q
is the noise parameter.
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Key-rate of our HD-SQKD protocol



43/44



44/44


	hideit
	thispresentation
	notneeded
	neededagain
	Second Part of the Talk

