Introduction

e Modern cryptographic protocols have
unproven computational assumptions
while QKD offers unconditional security.

e High-dimensional QKD offers many
practical advantages but analytical
security proofs are not straight-forward in
restricted scenarios.

The HD-3-State-BB34 protocol

In this work, we consider the following pro-

tocol which had a numerical security analysis
before [1].

e Alice randomly chooses any of the
Z ={]0),[1),...,|D — 1)} basis states to
send to Bob 1n a key-round.

e In a test round, she sends only the first state
of the Fourier basis, |z).

e Bob randomly chooses to measure 1n basis
Z or POVM |xp) (x|, T — |x0) (0]

e The pertorm classical error correction and
privacy amplification if the noise 1s
acceptable.

Proof Sketch

e Calculate the density operators for a
‘key-round’ p 4 pzp and a ‘test-round’ o 4575
after Bob’s measurement .

e Use Berta’s entropic uncertainty relation in
0 pzp to find
H(B?|E), > log(D) — H(BX),

e Use Winter’s continuity to find
H(B%|E), — H(B?|E),| < f(c), where

e > 5llppze — op7El|.
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Proof Sketch (cont.)
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Figure: A schematic view of our proof method

Evaluation

We evaluate the following key rate:

K >log(D) — A — H(B"), — leakgc
where A = |H(B“|E), — H(B*|E),|. We
evaluate our analysis and compare 1t with [1].
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Figure: Noise Tolerance in high-dimensions
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Figure: Noise vs Key rate for HD-3-State-BB84
Ours vs [1]

A New Lemma

For two cqg-states ppzp and ogzp where op =
og + Ag where Ag 1s some small ‘noise’, the
following holds for D = 2 in the depolarizing
channel with parameter 0 < g < .1416:

H(B?|E), — H(B”|E),
< h(l—q—q(1 —q)).

Proof Sketch of This Lemma

e In a depolarizing channel, we know the
eigenvalues of ppzg.

o Tracing out B“, we use Horn’s theorem to
generate a set of possible eigenvalues of pg.

e Because oy = pr + A 1n our protocol, the
eigenvalues of o can not vary too much
from the eigenvalues of pr due to Weyl’s
eigenvalue stability inequality.

Comparison of Our Bound With
Others

We compare our new bound for the cq-
states 1n the protocol with Winter’s bound and
Wilde’s conjecture and plot the conditional
entropy difference.
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Figure: Continuity bound comparison in a limited
scenario
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Improved Key Rate With New
Bound

We see that our bound slightly improves the
key rate for D = 2 and 0 < ¢ < .1464 com-
pared to Winter’s bound.

—Key rate with new bound
—Key rate with Winters bound
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Figure: Comparison of key rates with our bound
and Winter’'s bound

Conclusion

e We have proved the analytical security of
the HD-3-State-BB&4.

e Established the advantage of using
HD-resources.

e Derive a new continuity bound for
quantum entropies applicable 1in a limited
scenario.
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