New Security Proof of a Restricted High-Dimensional QKD Protocol (arXiv:2307.09560)

Introduction

- Modern cryptographic protocols have unproven computational assumptions while QKD offers unconditional security.
- High-dimensional QKD offers many practical advantages but analytical security proofs are not straight-forward in restricted scenarios.

The HD-3-State-BB84 protocol

In this work, we consider the following protocol which had a numerical security analysis before [1].

- Alice randomly chooses any of the $Z = \{|0\rangle, |1\rangle, ..., |D-1\rangle\}$ basis states to send to Bob in a key-round.
- In a test round, she sends only the first state of the Fourier basis, $|x_0\rangle$.
- Bob randomly chooses to measure in basis Z or POVM $|x_0\rangle\langle x_0|, \mathbb{I} - |x_0\rangle\langle x_0|.$
- The perform classical error correction and privacy amplification if the noise is acceptable.

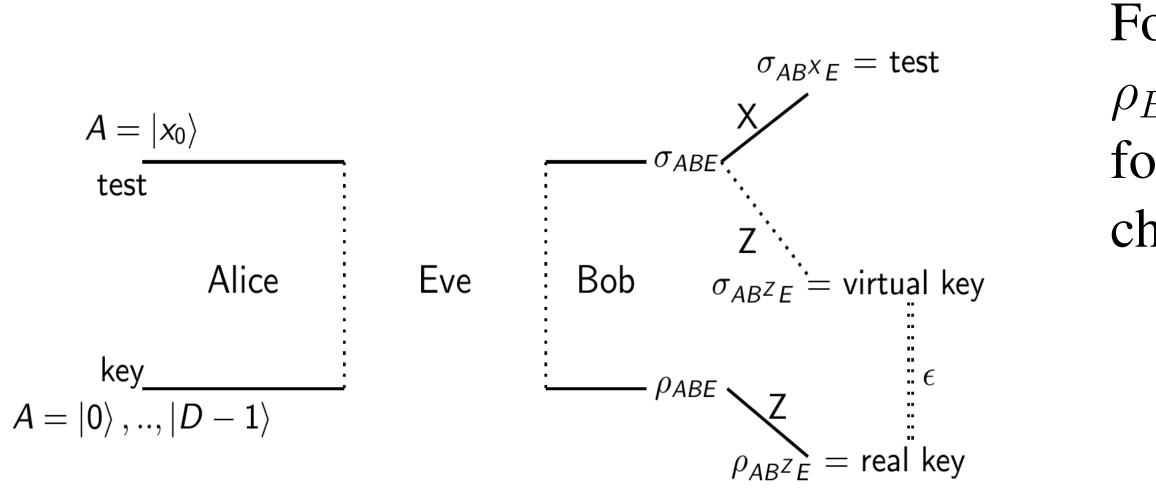
Proof Sketch

- Calculate the density operators for a 'key-round' $\rho_{AB^{Z}E}$ and a 'test-round' $\sigma_{AB^{Z}E}$ after Bob's measurement.
- Use Berta's entropic uncertainty relation in $\sigma_{B^Z E}$ to find
- $H(B^Z|E)_{\sigma} \ge \log(D) H(B^X)_{\sigma}.$
- Use Winter's continuity to find $|H(B^Z|E)_{\sigma} - H(B^Z|E)_{\rho}| \leq f(\epsilon)$, where $\epsilon \geq \frac{1}{2} ||\rho_{B^{Z}E} - \sigma_{B^{Z}E}||.$

Hasan Iqbal, Walter O. Krawec

Computer Science and Engineering, UConn

Proof Sketch (cont.)



Evaluation

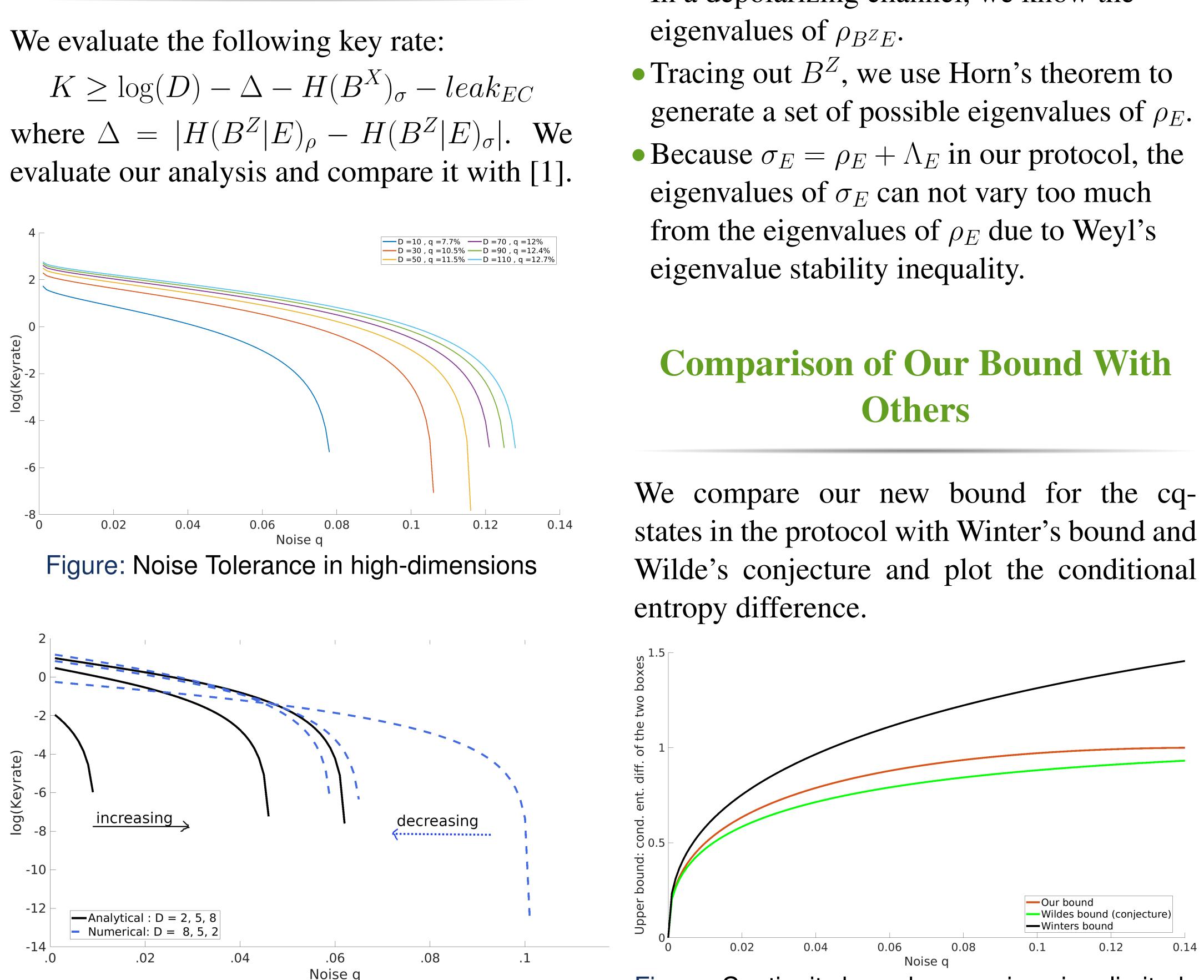


Figure: Noise vs Key rate for HD-3-State-BB84 Ours vs [1]

A New Lemma

For two cq-states $\rho_{B^{Z}E}$ and $\sigma_{B^{Z}E}$ where $\sigma_{E} =$ $\rho_E + \Lambda_E$ where Λ_E is some small 'noise', the following holds for D = 2 in the depolarizing channel with parameter $0 \le q \le .1416$:

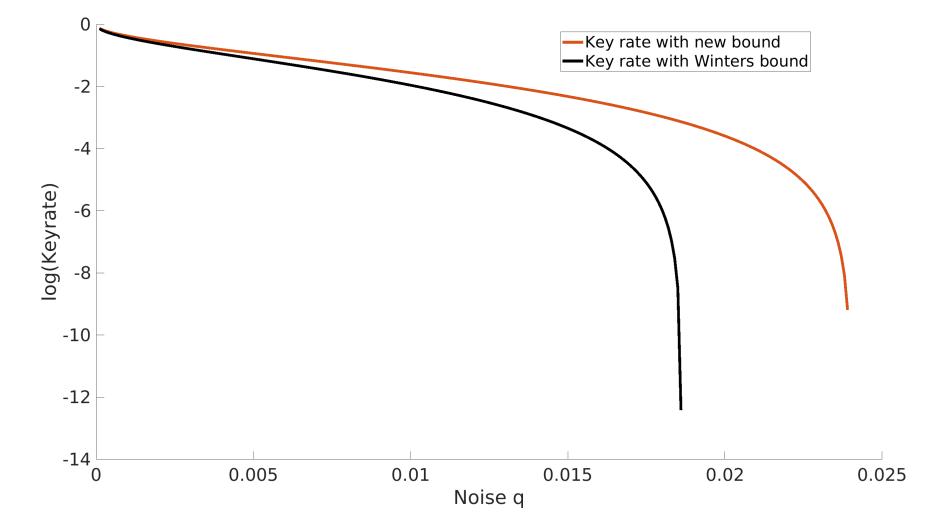
> $\left| H(B^Z | E)_{\rho} - H(B^Z | E)_{\sigma} \right|$ $\leq h(1-q-\sqrt{q(1-q)}).$

Proof Sketch of This Lemma

• In a depolarizing channel, we know the

Figure: Continuity bound comparison in a limited scenario

We see that our bound slightly improves the key rate for D = 2 and $0 \le q \le .1464$ compared to Winter's bound.



	We
	the
	Est
	HE
	De
	qua sce

[1] Nurul T Islam, Charles Ci Wen Lim, Clinton Cahall, Jungsang Kim, and Daniel J Gauthier. Securing quantum key distribution systems using fewer states. *Physical Review A*, 97(4):042347, 2018.

[2] Charles H Bennett and Gilles Brassard. Quantum cryptography: public key distribution and coin tossing. *Theor. Comput. Sci.*, 560(12):7–11, 2014.

[3] Hasan Iqbal and Walter O Krawec. High-dimensional semiquantum cryptography. IEEE Transactions on Quantum Engineering, 1:1-17, 2020.

Improved Key Rate With New Bound

Figure: Comparison of key rates with our bound and Winter's bound

Conclusion

e have proved the analytical security of e HD-3-State-BB84.

tablished the advantage of using **)**-resources.

erive a new continuity bound for

antum entropies applicable in a limited enario.

References