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What is Quantum Key Distribution(QKD)



QKD in Practice

IDQuantique, Switzerland Toshiba, Japan Qubittek, USA



Why Device Independence (DI)

Practical implementation creates vulnerability, which are hard to
defend against. Example:

Photon number splitting attack

Laser damage attack



DI Assumptions

I Alice and Bob can not signal to each other.

I They have access to a trusted RNG.

I Communication channel between them is authenticated.

I Quantum physics is correct.

Note that, the devices are fully uncharacterized. If asked to
measure in Z basis, it may very well measure in the X basis.



(Mayers and Yao, 98) [1]

DI Challenge

Can security be guaranteed by the input-output behavior of the
devices alone?



Hint of an answer

Ekert’s E91 paper [2] had the following:



Complete answer

After a series of papers, Vazirani and Vidick in 2014 proved the
general security on a variant of E91 protocol [3].







x y a b x∧y a ⊕ b

0 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

1 1 0 0 1 0

a⊕ b = x ∧ y
Deterministic strategy: win 75% of the times







Expected value of A0,B0 = 〈A0B0〉 = 〈EPR|A0 ⊗ B0|EPR〉
p(B0 = 0|A0 = 0)p(A0 = 0)(+1)+

p(B0 = 1|A0 = 0)p(A0 = 0)(−1)+

p(B0 = 0|A0 = 1)p(A0 = 1)(−1)+

p(B0 = 1|A0 = 1)p(A0 = 1)(+1)

= .5(.8536− .1464 + .8536− .1464)

= .7071

Note that, this is also the probability that they win minus the
probability that they lose given x = 0 and y = 0.



Similarly:

〈A0B1〉 = 〈A1B0〉 = .7071

〈A1B1〉 = −.7071(mismatch wins here, so, OK)

So, the following operator:
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gives the probability that they win minus the probability that they
lose in a single round. Let’s define CHSH := 2

√
2. Notice that,
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) = .8536,

as mentioned before.



Let {A0,B0,A1,B1} ∈ {±1}. Local hidden variable model says:

E(A0(λ)B0(λ)) =

∫
λ
p(λ)A0(λ)B0(λ)dλ.

Then,

E(A0(λ)B0(λ) + A0(λ)B1(λ) + A1(λ)B0(λ)− A1(λ)B1(λ)) =

(1)

=

∫
λ

(
A0(λ)B0(λ) + A0(λ)B1(λ)

+ A1(λ)B0(λ)− A1(λ)B1(λ)
)
p(λ)dλ.



But notice that, because {A0,B0,A1,B1} ∈ {±1}, either,

B0(λ) + B1(λ) = 0 or B0(λ)− B1(λ) = 0,

and the other is ±2. So, equation (1) becomes:

E(A0(λ)B0(λ) + A0(λ)B1(λ) + A1(λ)B0(λ)− A1(λ)B1(λ)) =

=

∫
λ∈Λ

(
A0(λ)

(
B0(λ) + B1(λ)

)
+ A1(λ)

(
B0(λ)− B1(λ)

))
p(λ)dλ

≤ 2.

With equality, we see that,

p(win) =
1

2
(1 +

2

4
) = .75,

as seen in the classical case.















The Goal



Key-rate Computation



Why higher CHSH value is better for key-rate? Pironio et.al. [4]
showed that for collective attacks, Eve’s information could be
upper bounded by:

χ(B : E ) ≤ h

(
1 +

√
(CHSH/2)2 − 1

2

)

Figure 1: Eve’s knows less as CHSH value goes higher



Information Reconciliation







Privacy Amplification





Figure 2: Key-rate goes down with noise



I CHSH Game ensures secrecy.

I Higher violation of Bell’s inequality is better for Alice and Bob.

I Fully DIQKD is possible against coherent attacks.



Proof of Secrecy

The following three conditions can not hold simultaneously.

I The devices violate CHSH inequality in the test rounds.

I Eve can predict Bob’s output in the key rounds.

I No-signalling property is satisfied among all parties in all
rounds.



A ’Rare’ Round

Figure 3: Contradiction of (a), (b) with (c)



Figure 4
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